emukit.experimental_design.acquisitions package¶
Submodules¶
Contains integrated variance acquisition
- class emukit.experimental_design.acquisitions.integrated_variance.IntegratedVarianceReduction(model, space, x_monte_carlo=None, num_monte_carlo_points=100000)¶
Bases:
Acquisition
Acquisition function for integrated variance reduction
- evaluate(x)¶
- Parameters
x (
ndarray
) – The new training point(s) to evaluate with shape (n_points x 1)- Return type
ndarray
- Returns
A numpy array with shape (n_points x 1) containing the values of the acquisition evaluated at each x row
- property has_gradients¶
Abstract property. Whether acquisition value has analytical gradient calculation available.
- Returns
True if gradients are available
- class emukit.experimental_design.acquisitions.model_variance.ModelVariance(model)¶
Bases:
Acquisition
This acquisition selects the point in the domain where the predictive variance is the highest
- evaluate(x)¶
Abstract method. Evaluates the acquisition function.
- Parameters
x (
ndarray
) – (n_points x n_dims) array of points at which to calculate acquisition function values- Return type
ndarray
- Returns
(n_points x 1) array of acquisition function values
- evaluate_with_gradients(x)¶
Optional abstract method that must be implemented if has_gradients returns True. Evaluates value and gradient of acquisition function at x.
- Parameters
x (
ndarray
) – (n_points x n_dims) array of points at which to calculate acquisition function values and gradient- Return type
- Returns
Tuple contains an (n_points x 1) array of acquisition function values and (n_points x n_dims) array of acquisition function gradients with respect to x
- property has_gradients¶
Abstract property. Whether acquisition value has analytical gradient calculation available.
- Returns
True if gradients are available