emukit.bayesian_optimization package¶
Subpackages¶
- emukit.bayesian_optimization.acquisitions package
- Submodules
EntropySearch
MultiInformationSourceEntropySearch
ExpectedImprovement
MeanPluginExpectedImprovement
get_standard_normal_pdf_cdf()
MultipointExpectedImprovement
get_covariance_given_smallest()
get_covariance_given_value_of_i()
get_correlations_given_value_of_i()
decompose_mvn()
Phi_gradient()
Phi_hessian()
LocalPenalization
LogAcquisition
MaxValueEntropySearch
MUMBO
NegativeLowerConfidenceBound
ProbabilityOfFeasibility
ProbabilityOfImprovement
- Module contents
- Submodules
- emukit.bayesian_optimization.interfaces package
- emukit.bayesian_optimization.loops package
Submodules¶
- emukit.bayesian_optimization.epmgp.joint_min(mu, var, with_derivatives=False)¶
Computes the probability of every given point to be the minimum based on the EPMGP[1] algorithm. [1] J. Cunningham, P. Hennig, and S. Lacoste-Julien. Gaussian probabilities and expectation propagation. under review. Preprint at arXiv, November 2011.
- Parameters
mu (
ndarray
) – Mean value of each of the N points, dims (N,).var (
ndarray
) – Covariance matrix for all points, dims (N, N).with_derivatives (
bool
) – If True than also the gradients are computed.
- Return type
ndarray
- Returns
pmin distribution, dims (N,1).
- emukit.bayesian_optimization.epmgp.min_factor(Mu, Sigma, k, gamma=1)¶
- emukit.bayesian_optimization.epmgp.lt_factor(s, l, M, V, mp, p, gamma)¶
- emukit.bayesian_optimization.epmgp.log_relative_gauss(z)¶
- class emukit.bayesian_optimization.local_penalization_calculator.LocalPenalizationPointCalculator(acquisition, acquisition_optimizer, model, parameter_space, batch_size, fixed_lipschitz_constant=None, fixed_minimum=None)¶
Bases:
CandidatePointCalculator
Candidate point calculator that computes a batch using local penalization from:
- compute_next_points(loop_state, context=None)¶
Computes a batch of points using local penalization.